Done!

(2√3 - 2i)^-2 de moivre's theorem and complex numbers

Mathematics
Physics
Engineering

Progress

6 steps completed!61.78 sec

Answer

To solve (232i)2(2\sqrt{3} - 2i)^{-2} using De Moivre's Theorem and complex numbers, follow these steps:

  1. Convert the complex number to polar form. For a complex number z=x+yiz = x + yi, the polar form is given by z=r(cosθ+isinθ)z = r(\cos \theta + i \sin \theta), where:

    • r=x2+y2r = \sqrt{x^2 + y^2} (the modulus)
    • θ=tan1(yx)\theta = \tan^{-1}(\frac{y}{x}) (the argument)

    In this case:

    • x=23x = 2\sqrt{3}
    • y=2y = -2

    Calculate the modulus rr:

    r=(23)2+(2)2=12+4=16=4r = \sqrt{(2\sqrt{3})^2 + (-2)^2} = \sqrt{12 + 4} = \sqrt{16} = 4

    Now calculate the argument θ\theta:

    θ=tan1(223)=tan1(13)=π6\theta = \tan^{-1}\left(\frac{-2}{2\sqrt{3}}\right) = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}

    Therefore, in polar form:

    232i=4(cos(π6)+isin(π6))2\sqrt{3} - 2i = 4\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)
  2. Use De Moivre's Theorem. According to De Moivre's theorem:

    (r(cosθ+isinθ))n=rn(cos(nθ)+isin(nθ))(r (\cos \theta + i \sin \theta))^n = r^n (\cos(n\theta) + i \sin(n\theta))

    We need to find (232i)2(2\sqrt{3} - 2i)^{-2}:

    (232i)2=(4(cos(π6)+isin(π6)))2(2\sqrt{3} - 2i)^{-2} = (4(\cos(-\frac{\pi}{6}) + i \sin(-\frac{\pi}{6})))^{-2}

    This simplifies to:

    42(cos(π62)+isin(π62))=116(cos(π3)+isin(π3))4^{-2} \left(\cos(-\frac{\pi}{6} \cdot -2) + i \sin(-\frac{\pi}{6} \cdot -2)\right) = \frac{1}{16} \left(\cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right)\right)
  3. Calculate the trigonometric values:

    cos(π3)=12,sin(π3)=32\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}

    Thus:

    (232i)2=116(12+i32)=132+i332(2\sqrt{3} - 2i)^{-2} = \frac{1}{16} \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = \frac{1}{32} + i \frac{\sqrt{3}}{32}
  4. Final Result:

    (232i)2=132+i332(2\sqrt{3} - 2i)^{-2} = \frac{1}{32} + i \frac{\sqrt{3}}{32}

This is the result in rectangular form after applying De Moivre's theorem to the complex number.